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Tilt and twist components are determined for cubic bicrystals meeting at a planar boundary. It is shown 
that any boundary is nearly either a twist or tilt boundary, but the distinction between the two types is, 
in some cases, ambiguous. 

Introduction 

In the study of the structure and properties of grain 
boundaries in solids it is useful to consider the special 
cases of pure tilt and pure twist boundaries (e.g. Read 
& Shockley, 1950; Read, 1953 ; Bishop & Chalmers, 
1971; Weins, Gleiter & Chalmers, 1971). The relative 
orientation of the space lattices, A and B, of two crys- 
tals meeting at a grain boundary can be described as 
the product of a rotation (u, 0) and translation t, with 
the convention that the axis of rotation, u, contains a 
lattice point of lattice A (Fortes, 1972). Let n be the 
normal to the plane of the boundary. Then, if u is pa- 
rallel to n the boundary is a (pure) twist boundary; it is 
a (pure) tilt boundary when u is nonr~al to n, i.e. when 
the axis of misorientation is parallel to the boundary 
plane. The structural differences between these two 
types of boundary are particularly noticeable in the 
case of low-angle boundaries; these can be described 
in terms of edge or screw dislocations respectively, 
depending on whether the boundary is a tilt or twist 
boundary (e.g. Read, 1953). 

The classification of a planar grain boundary as a 
tilt or twist boundary can, in some cases, be ambiguous. 
In triclinic bicrystals, the axis/angle pair (n, 0) describ- 
ing the relative orientation is unique and no ambiguity 
arises in the definition of tilt or twist boundaries. In all 
other cases the situation is more complex. For instance, 
the misorientation of two cubic lattices can be de- 
scribed in 24 different ways (Goux, 1961) and cases 
may occur, as we will show, where a grain boundary 
may be classified both as a tilt and twist boundary. 

Tilt and twist components in cubic bicrystals 

A planar grain boundary between two crystals will in 
general be a mixed boundary, which can be described 
as the combination, or product, of tilt and twist com- 
ponents. We now derive, for the case of cubic crystals, 
this description in terms of tilt and twist components, 
and discuss the complications that result from the non- 
uniqueness of the axis/angle pair. Let A and B be the 
adjacent grains and ul, uz, u3, the direction cosines of 
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the axis of misorientation, n, relative to the cube axes 
of the unit cell; the ui are the same in the two crystals 
and proportional to the Miller indices of the direction 
u. A clockwise rotation (0 < 0 < 180 °) of lattice A, fol- 
lowed by a translation t brings it in coincidence with B. 
The unit normal n to the plane of the boundary has 
components n~nzn 3 relative to the cube axes of A. At  
this stage the ni are defined except for their signs. 

The product of two clockwise rotations (n,v) and 
(!,2) of a rigid body (in this order, and with the axes 
referred to the same reference system) is equivalent to 
a simple rotation (u,0) defined by 

0 v ~. v 2 
cos 2 = cos ~ .  cos 2 - s i n  ~-. sin -2 . (n.  l) (1) 

0 
sin ~- 2 v 
v 2 u = - (n^l) + n ctg ~- + 1 ctg ~- (2) 

s i n  s i n  
2 2 

where (n.  1) and (hAl) are scalar and vector products, 
respectively. This result is easily obtained by consider- 
ing the rotation matrices N, L and U, related by 

U = L . N .  (3) 

Using equations (1) and (2), and referring all rotation 
axes to the cube axes of A, we obtain the following re- 
suits for the decomposition of (u, 0) in twist, (n, v), and 
tilt, (i,2), components" 

(a) angle of twist, v: 

v 0 (u n) (4) 
tg 2 = tg-2  " " " 

The sense of n is chosen in such a way that 0 < v < 180 °. 
(b) angle of tilt, 2" 

0 
2 cos 2 

cos 2 - v ' (5) 
cos 

2 

(c) the tilt axis, !, is obtained from 

l . n = 0  
! . 1 = 1  2 0 
1. n = t g ~ . c t g ~ .  (6) 
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When 0 = 180 °, equations 4 and 5 cannot  be applied. 
The solution in this case is as follows: i fu .  n ¢ 0, v = 180 ° 
and cos 2/2 = u .  n; if u .  n = 0, the boundary  is pure tilt 
( 2 =  180°; v=0) .  

If  the tilt rotat ion is applied before the twist, the 
angles v and 2 are the same, and the axis of  tilt !', is 
obtained from I by rotat ion (u, 0). We may therefore 
conclude that  the tilt and twist angles are the same 
whatever the order of  the two rotations. 

If  we now mult iply the rotation (u, 0) by any of  the 
23 symmetry  rotations (s, (7) of  the cubic lattice we ob- 
tain equivalent descriptions (u',O') for the relative 
orientation of the two lattices. The symmetry  rotations 
will be performed on lattice B, after the rotation (u, 0), 
and we shall refer s to the cube axes of B (i.e. s is a unit 
vector in the directions [001], [011] or [111] of lattice B). 
It  can be shown that  the new rotat ion matrix U' is re- 
lated to U by 

U '=U .  S (7) 

where S is the matr ix representing the rotat ion (s, a), 
referred to the cube axes of B. Each of  the equivalent 
rotat ions can now be decomposed into tilt and twist 
components,  in the same way as was done for the ori- 
ginal rotation. The angle of  twist, v', for each equivalent 
description is given by 

0 + ( u  n) ctg (7 v' - (uAn) . s +  (n .  s ) .  ctg ~- . . 
t g ~ - =  - -  (8) 

0 (7 
ctg ~- .  ctg ~ - u .  s 

80- 

Angle of twist (V) 

Angle of tilt (h) 

2 i 
0 

Fig. 1. The  lower curve gives the smallest  angle of  tilt or twist 
for a grain boundary parallel to (lll)A between two cubic 
crystals A and B, with a misorientation 0 about [011]. The 
upper curves give the corresponding angle of twist or tilt. 

and the associated angle of  tilt, 2', is obtained f rom 

0 (7 0 (7 
2' cos~- ,  cos ~ - s i n  2-" sin 2-" (u .  s) 

cos ~- - v' (9) 
COS -~- 

Description of the grain boundary • 

A boundary  can be classified as a pure-tilt  boundary  
if, for any (s, a), we have v' = 0 ;  and as a pure-twist if 
2' =0 .  We note that  for a given axis of misorientat ion 
of two cubic crystals there are, in general, 24 orienta- 
tions for the plane of the boundary  which correspond 
to a pure-twist boundary.  It may happen that  a grain 
boundary  is simultaneously a pure-tilt  and pure-twist 
boundary.  In fact, suppose that  in the original descrip- 
tion u is parallel to n, so that  the grain boundary  can 
be classified as a pure-twist boundary.  For  it to be a 
pure-tilt  boundary  as well there must  be an equivalent 
u' such that  u ' .  n = 0 or u ' .  u = 0. This condit ion is sa- 
tisfied provided there is a (s, a) such that  

0 cr 
tg ~ = - (u.  s) .  tg ~-.  (10) 

The angle of tilt is then given by 

(7 
2' cost 

cos 2 - ~  " (11) 
COS -~- 

It can b.e shown that  the smallest angle of  misorienta- 
tion for which a boundary  is both  tilt and twist is 
65.6 ° (cos 0 = [ / 2 - 1 ) .  The normal  n to the plane of  the 
boundary  has one of  its direction cosines equal to 
(V~--1) a/2. A 65"6 ° rotat ion about  n is equivalent to a 
65.6 ° rotat ion about  an axis normal  to n. 

A small-angle boundary  can be described as a unique 
product  of small twist and small tilt components.  Con- 
sequently, there is no ambiguity in the dislocation 
model of  low-angle boundaries.  However,  for high- 
angle boundaries,  it is in general not  possible to as- 
sociate each type of  dislocation with each type of  
boundary.  This fact may  be impor tant  in a discussion 
of  grain boundary  dislocations in high-angle bound-  
aries. 

For  a given grain boundary  one may  always choose 
the description involving the smallest angle of  tilt or 
twist, so as to make the boundary,  as nearly as possible, 
a pure-twist or a pure-tilt  boundary.  For  example, a 
given grain boundary  may involve in one description a 
3 ° tilt component ,  and in another  description, a 7 ° 
twist component .  We would then say that  the boundary  
is almost  (within 3 °) a pure-twist boundary,  and choose 
this description for the grain boundary.  In fact, any 
planar  grain boundary  between two cubic crystals is 
almost  either a pure-tilt  or pure-twist boundary.  To 
illustrate this point  we consider a grain boundary  par- 
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allel to (111)a between two cubic crystals A and B with 
a misorientation 0 abotlt [011]. Since the axis of mis- 
orientation is a twofold axis of symmetry, rotations of 
angles 0 and (180 ° -  0) are equivalent. Fig. 1 shows, for 
each value of 0 (0 < 0 < 90°), the angles of tilt and twist 
which correspond to the equivalent description involv- 
ing the smallest angle of tilt or twist. The maximum 
deviation from a pure case is 16.9 ° and occurs for 
0=29.5 ° . Pure-tilt boundaries occur for the following 
values of 0: 39.0, 50.5 and 70.5 °. 

References 

BxsHoP, G. H. & CHALMERS, B. (1971). Phil. Mag. 24, 
515-526. 

FORTES, M. A. (1972). Acta Cryst. A28, 100-102. 
Goux, C. (1961). Mere. Sci. Rev. Metall. 58, 661-676. 
READ, W. T. & SHOCKLEV, W. (1950). Phys. Rev. 78, 275-289. 
READ, W. T. (1953). Dislocations in Crystals, Chapter 12. 

New York: McGraw-Hill. 
WEINS, M. J., GLEITER, H. & CHALMERS, B. (1971). J. Appl. 

Phys. 42, 2639-2646. 

Acta Cryst. (1973). A29, 70 

The Coupling of the Thermal Motions of the Atoms in a Crystal as Deduced from the Acoustic 
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The strength of the coupling of the motions of the atoms in different cells of a crystal is investigated by 
means of the acoustic spectrum of the thermal diffuse scattering. The calculations are performed for a 
monatomic cubic crystal. Correlation coefficients, which express the amount of in-phase motions of 
remote atoms in the crystal, are approximately determined from the term 1/q2 o f  the acoustic spectrum. 
This term is valid for all crystals. We find that the coupling of the motions of the atoms is approximately 
inversely proportional to the distance between the atoms in the crystal. 

1. Introduction 

In the usual lattice-dynamical treatment of the thermal 
motions of the atoms it is assumed that there are forces 
among the atoms in the crystal so that the motions of 
the atoms are coupled. This assumption means that the 
internal motions of a lattice can be represented by a 
superposition of separate running or standing waves 
(in the harmonic approximation). In such a wave all 
atoms move with the same frequency and a phase 
shift which is determined by the wavelength and the 
position of the atom in the crystal. Hence, for such a 
wave a coupling of the motions of even widely sepa- 
rated atoms in the crystal exists. In a crystal with many 
cells there are as many waves which are excited ac- 
cording to the laws of quantum statistics. Because of 
the different wavelengths the superposition of the 
waves in the motions of any particular atom prevents 
a noticeable effect of thermal coupling between widely 
separated atoms in the crystal. This means that in the 
crystal two atoms show a noticeable in-phase (or out- 
of-phase) motion only within a certain distance. Now 
we want to know how large this distance is, or to what 
extent the coupling of the motions of the atoms de- 
creases with increasing distance. 

The interatomic thermal coupling becomes manifest 
in the acoustic spectrum of the thermal diffuse scat- 
tering, which shows sharp maxima at the reciprocal- 
lattice points. Thus it should be possible to draw con- 
clusions about the strength of the interatomic coupling 

from the profile of the acoustic spectrum. Such an 
attempt will be made in this paper. We restrict our 
treatment to a monatomic cubic crystal and only 
discuss the manifest acoustic spectrum of the first 
order. 

2. Derivation of the coupling terms 

The intensity of the first-order acoustic spectrum for a 
monatomic cubic lattice is given by 

I(S/2)=f~ e -zM ~ ~, ~, Gqj exp {2hi S/2 
n m q j  

×(rn--rm) } COS {q. (rn--rm)}, (1) 
where 

aqj=2M; (2) 
qJ 

and for temperatures well above the Debye temperature 

a q j -  mNo)~(q) S.  e(qj) , (3) 

(cf. James, 1948, equations 5.27, 5.23 and 5.25). The 
symbols have the following meaning: 

2 =wavelength of the X-rays, 
S/2=vector in reciprocal space, S =  ISl =2  sin 0, 

f0 = scattering factor for the atom at rest, 
n,m=indices to denote the cell in the crystal; the 

components n~ and m, are integer, 


